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phenyls (Figure 1), stereoview of Figure 1 (Figure 2). ORTEP 
drawing of full asymmetric unit (Figure 3), schematic of atom num­
bering scheme (Figure 4), interatomic distance and angles (Table 1), 
structure factor list (Table 2), fractional coordinates (Table 3) (54 
pages). Ordering information is given on any current masthead 
page. 
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Electroreduction of Retinal. Formation of Pinacol 
in the Presence of Malonate Esters 

Sir: 

Reductive electrodimerization of a,/3-unsaturated carbonyl 
compounds most frequently results in a mixture of dimeric 
products.M 0 In contrast, we have accomplished the high-yield 
electrosynthesis of retinal pinacol (III) from the one-electron 
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Figure 1. Spectra of dimeric products resulting from electrolysis of 2.05 
mM retinal at the first reduction wave in the presence of different proton 
donors in an OTTLC. All solutions were 0.5 M TBAP in acetonitrile. 
Proton donor concentrations follow: (- • -) 1000-fold excess water; ( ) 
2-fold excess acetic acid; (—) 5-fold excess diethyl malonate. 

reduction of retinal (I) in acetonitrile. This electrosynthesis 
is successful only in the presence of carbon acids such as diethyl 
malonate (II); electrodimerization of retinal in solutions 
containing water, phenol, or acetic acid leads to a mixture of 
less-conjugated dimeric products. Thus, the use of malonate 
esters as proton donors demonstrates a new method for di­
recting the pathway of electrodimerization. Procedures for 
coupling unsaturated carbonyl compounds are of particular 
significance—in the case of retinal, pinacolization provides a 
useful synthetic route to the C40 carotenoids. 

High yield of the "head-to-head'* coupling products can be 
obtained by chemical reduction of retinal with a zinc amalgam 
to form pinacol'' or by reduction with a LiAlFU-TiCIj reagent 
to form /3-carotene.12 However, previous electrochemical at­
tempts to synthesize pinacols from retinal9 and related com­
pounds7-8 have been markedly unsuccessful. Electroreduction 
of retinal in acetonitrile with tetra-«-butylammonium acetate 
yields 11% pinacol.9 Electrochemical reduction of 3-methyl-
crotonaldehyde in pH 5.00 acetate buffer results in a pinacol 
yield of 10%.7 Similar quantities of pinacol are obtained in the 
reduction of geranial and farnesal in aqueous, micelle, or 
ethanolic solutions.8 Electroreductive pinacol formation has 
been achieved only when the /3 position is totally blocked (e.g., 
acetophenone13) or, in some cases, if there is steric hindrance 
at the /3 position (e.g., 71 % yield of pinacol by electrodimeri­
zation of /3-ionone9). Our unique electrochemical route for 
pinacolization of retinal demonstrates that judicious selection 
of proton donor results in high yield of the desired product in 
a rapid, one-step synthesis. 

Using cyclic voltamtnetry with a hanging mercury drop 
electrode, as well as spectroelectrochemistry, we have exam­
ined the electrochemical behavior of retinal in acetonitrile with 
tetra-tt-butylammonium perchlorate (TBAP) as supporting 
electrolyte.14 Spectroelectrochemistry was performed with an 
optically transparent thin-layer cell (OTTLC) containing a 
gold minigrid working electrode.14 Retinal (Xmax 375 nm) is 
reduced to the radical anion (Xmax 515 nm (Ev/2 —1.33 V)) 
in a quasi-reversible, one-electron process. With equal amounts 
of diethyl malonate and retinal, the latter undergoes an irre­
versible, one-electron reduction and the absorption spectrum 
after electrolysis shows peaks at 325 and 260 nm (Figure 1). 
The absorbance at 325 nm corresponds to that for retinal pi­
nacol in 89% yield." The peak at 260 nm is ascribed to the 
diethyl malonate anion (IV); a mixture of diethyl malonate and 
tetraethylammonium hydroxide in acetonitrile-TBAP has the 
same absorption maximum. Consumption of 1 mol of pro-
tons/mol of retinal reduced is confirmed by the appearance 
of a one-electron wave for oxidation of diethyl malonate anion 
that is equal in height to the reduction wave for retinal. The 
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stoichiometry, electrochemistry, and spectral data are con­
sistent with the formation of retinal pinacol (Scheme 1). Pi-
nacol formation is also achieved in the one-electron reduction 
of retinal in the presence of 100-fold molar excess of diethyl 
ethylmalonate. 

Spectroelectrochemistry shows that the pinacol is but a 
minor product of reduction of retinal in the presence of added 
water, phenol, or acetic acid. This is evidenced by the absence 
of an absorption maximum at 325 nm in the product spectra 
(Figure 1). A mixture of dimeric products is formed which are 
not electroactive. As previously discussed, this is the expected 
result for electrodimerization of «,/3-unsaturated com­
pounds. 

We have isolated and characterized the pinacol following 
bulk electrolysis of retinal in the presence of diethyl malonate. 
In these experiments, retinal (0.05 g) in acetonitrile with 0.1 
M TBAP was reduced at a mercury pool cathode with a silver 
wire quasi-reference electrode and an isolated platinum aux­
iliary electrode. Electrolysis in the presence of a 10-fold molar 
excess of diethyl malonate at a potential 100 mV cathodic to 
the first observed half-wave potential consumes 1.09 ± 0.14 
electrons/mol. A UV spectrum of the electrolysis products 
before extraction indicated the presence of 85% pinacol by 
weight. The products were extracted into ether, dried, and 
separated by thin-layer chromatography (TLC) using the 
method of Fung et al.;16 butylated hydroxytoluene served as 
an antioxidant except for the spectral studies. The spectral data 
are all in direct agreement with that expected for retinal pi­
nacol.17 Isolated yield of the pinacol was 50% of the starting 
material. This yield reflects losses of the pinacol during TLC 
due to the sensitivity of retinal compounds to light and air 
oxidation.18 Other identified products (which were present in 
<5% yield) include retinol, /3-carotene, and retinal from in­
complete electrolysis. 

These results demonstrate that diethyl malonate and diethyl 
ethylmalonate work in a unique manner to foster electrodi­
merization of retinal at the carbonyi carbon. It can be con­
cluded from our data that acid strength of the proton donor is 
not the predominant effect: water, a weak acid in acetonitrile, 
and acetic acid, which is a much stronger acid than diethyl 
malonate, both produce the same mixture of dimers with very 
little pinacol. A detailed study of the directed coupling is re­
quired to elucidate the reaction mechanism. We have observed 
the radical anion of retinal by cyclic voltammetry at 0.5 V/s 
under conditions where exhaustive electrolysis yields the pi­
nacol, which infers that malonate esters form a weak complex 
with the radical anion and thus direct the coupling reaction 
toward pinacol formation. This report of preferential dimeri-
zation at the carbonyi carbon upon electroreduction of retinal 
is the first instance of selective pinacol formation by electro­
chemical means; whether malonate esters or different carbon 
acids promote pinacol formation with other a,/3-unsaturated 
aldehydes will be the subject of future research. 
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New Synthetic Methods. 
Allylic Alkylation of Enol Thioethers 

Sir: 

To date, enol thioethers represent the least useful class of 
enol derivatives. Except for their hydrolysis to carbonyi part­
ners or reduction to olefins, their synthetic applications have 
been almost ignored. The fact that they are as readily available 
from ketones' as enamines, enol acetates, or enol silyl ethers, 
as well as available directly by addition of sulfur-stabilized 
anions to carbonyi groups,2 isomerization of allyl phenyl sul­
fides,33 various methods of sulfenylation of olefin systems,313 

rearrangement of 1-phenylthio-l-vinylcyclopropanes,4 me-
talation and alkylation of phenyl vinyl sulfide,5 oxidative de­
carboxylation of a-thioacids,6 etc., enhances interest in their 
elaboration as basic building blocks. The use of the afore­
mentioned enol derivatives has focused on their ability to in­
crease the nucleophilicity of the double bond. We wish to report 
that a new type of reactivity for enol derivatives is accessible 
via enol thioethers—nucleophilic alkylation at the allylic po­
sition which constitutes an equivalent of an enolonium ion.7 

Furthermore, combined with emerging new methods for direct 
elaboration of enol thioethers, this method becomes a poten­
tially powerful approach in synthesis. Equation 1 outlines the 
sequence. 
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